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Methods for solving two-dimensional tasks of cutting raw materials
Metody rozwiązywania problemów związanych z cięciem materiałów  
w dwóch wymiarach

Sevda Y. Aliyeva, Rabiya M. Abishova

Azerbaijan State Oil and Industry University

ABSTRACT: The article discusses the methodology for solving two-dimensional material cutting problems, widely used in practice and 
applied to industrial equipment. Several modifications of the original problem are considered. An interactive optimization procedure is 
presented for a general two-dimensional material cutting problem. When cutting correctly, the two dimensions of the cut pieces (usu-
ally length and width) must be consistent with the length and width of the sheet. One of the problems most frequently encountered in 
literature and in practice  is the problem of cutting a rectangular material into rectangular pieces. Therefore, this work focuses on this 
task. First, a two-dimensional problem of cutting material is formulated. Next, methods for solving the problem of cutting material 
and the related problem of constructing (creating) a template is outlined. The solution method includes a new interactive (dialogue) 
optimization procedure. A very interesting feature of 2D problems is that there are different options that arise from practical require-
ments due to the type of material and manufacturing process constraints. A description of the general technique would be incomplete 
without mentioning how it can be modified to apply specific practical problems. Therefore, the paper briefly discusses some practical 
applications and describes ways to modify the general methodology to solve these practical problems.
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STRESZCZENIE: W artykule omówiono metodologię rozwiązywania dwuwymiarowych problemów cięcia materiałów, szeroko 
stosowaną w praktyce i wykorzystywaną w urządzeniach przemysłowych. Rozważono różne modyfikacje pierwotnego problemu. 
Opracowano interaktywną procedurę optymalizacji dla ogólnego problemu dwuwymiarowego krojenia materiału. Podczas prawidło-
wego krojenia, dwa wymiary wyciętych elementów (zwykle długość i szerokość) muszą być zgodne z długością i szerokością arkusza. 
Jednym z najczęściej spotykanych w literaturze i praktyce problemów jest cięcie materiału prostokątnego na elementy prostokątne. 
Dlatego w niniejszej pracy skoncentrowano się na tym zadaniu. Przede wszystkim sformułowany został dwuwymiarowy problem 
materiału, a następnie omówiono metody rozwiązywania problemu krojenia materiału oraz pokrewnego problemu konstruowania sza-
blonu. Metoda rozwiązania obejmuje nową interaktywną procedurę optymalizacji tego procesu. Bardzo interesującą cechą problemów 
2D jest to, że istnieją różne opcje wynikające z wymagań praktycznych, podyktowanych rodzajem materiału i ograniczeniami procesu 
produkcyjnego. Opis ogólnej techniki byłby niepełny bez wzmianki o możliwości jej modyfikacji w celu zastosowania do konkretnych 
problemów praktycznych. Dlatego w artykule omówiono pokrótce niektóre zastosowania praktyczne i opisano sposoby modyfikacji 
ogólnej metodologii w celu rozwiązania tych problemów.

Słowa kluczowe: pcięcie gilotynowe, wektor, optymalizacja interaktywna, projektowanie, cięcie pionowe, modyfikacja.
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Introduction

Two-dimensional tasks involving cutting materials (raw 
materials) appear in manufacturing processes where the material 
in the form of a sheet must be cut into smaller parts (pieces). 
When cutting correctly, the two dimensions of the cut pieces 
(usually length and width) must be consistent with the length 
and width of the sheet. This is in contrast to a one-dimensional 
cutting problem, where typically a strip of material (i.e., its 

length) is cut into smaller lengths. A review of methods for 
solving a one-dimensional problem is available in (Golden, 
1976). The two-dimensional cutting problem has numerous 
applications: cutting and/or stamping of sheet metal, cutting 
of sheets of glass, paper, fabric, leather, film, plastic, etc. This 
task can also have applications in loading and packaging. 
Loading trucks, freight railway cars, and laying stacks are 
tasks equivalent to the two-dimensional problem of cutting 
material. In these problems, two-dimensional templates are 
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determined and the load is stacked (analogous to cutting) ac-
cording to these templates. 

The two-dimensional problem of cutting raw materials is to 
determine a method for obtaining a given number of rectangular 
pieces with dimensions (li, ωi), i = 1,… , n, from an unlimited 
rectangular material with the size of (L, W ). In this case, the 
goal is usually to minimize the total waste (clippings). However, 
practice also provides other objective functions: a) maximizing 
the total cost of the pieces (where the cost depends on the size 
and quality of the piece); b) minimizing the time (or cost) of 
setting up a machine to implement templates. 

When formulating the problem, the following notes are 
introduced:
Q – matrix of valid templates (column Q corresponds to 

a template); template (q1, q2,…, qm) gives q1 pieces  
with dimensions (l1, ω1), q2 pieces with dimensions  
(l2, ω2),..., qm pieces with dimensions (lm, ωm);

N – (m ∙ 1) – vector of needs; Ni – need for pieces with 
dimensions (li, ωi);

X – (m ∙ 1) – vector; xi – number of templates of the j-th type 
cut from the material;

ai = (l1 ∙ ωi) – area of the i-th piece, i = 1,…, m.

Statement of a two-dimensional problem  
of cutting raw materials

In the problem of minimizing the total amount of waste, it 
is required to determine xi, i = 1,…, m, so that,

 min
j

m

ix
=
∑
1

 QX = N, xi ≥ 0 – whole number (A1)

This formulation is similar to the one-dimensional cutting 
problem. The main feature of this task is to create templates 
for cutting, denoted (q1,…, qm). In one-dimensional problems, 
these templates are easily obtained by solving the correspond-
ing loading (knapsack) problem (Golden, 1976). Since in this 
case one size is given, solutions to the backpack problem 
are always obtained within the boundaries of the material. 
However, such a solution becomes relatively difficult in the 
two-dimensional case, since the solution to the correspond-
ing loading problem may not be within the boundaries of 
the material. The condition that the template fits within the 
boundaries of the material is also called the admissibility 
condition. Because of this condition, the technique for creating 
valid templates in the two-dimensional case will no longer be 
so simple. Therefore, before presenting in methods for solving 
the problem (A1), we will consider techniques for creating  
valid templates.

The task of creating a template

If vi is the cost of the i-th type of piece, then the problem 
of creating a template is formulated as follows:
 max(v1q1 + ... + vm qm)
providing
 a1q1 + … + am qm ≤ A = L × W,  q1,…, qm (В1)
integers giving a valid template.

The cost of a piece can be the market value of this piece, 
the cost of cutting this piece, or it is a characteristic of the 
quality of this piece, if the quality of the piece depends on its 
location on the workpiece of the material. The difficulty in 
solving problem B1 lies in the fact that the condition for the 
admissibility of a template is difficult to describe mathemati-
cally, and without this condition, the templates obtained by 
solving (B1) will not necessarily be admissible.

When creating a template, an important factor to consider 
is the type of cut used in cutting the template from the mate-
rial. One type of cut can be from one edge of the rectangular 
material to the other, called a “guillotine” cut. The material 
is cut with a guillotine sequentially in separate stages (opera-
tions), as can be seen in Figure 1a. This type of cut occurs 
when cutting is done on presses. Figure 1a shows a more 
general type of cutting, where the cut is not made from edge 
to edge. The sections shown in Figure 1a and c, are performed 
parallel to one of the edges of the workpiece. These types 
of cuts are called orthogonal. The sign of a non-orthogo-
nal section is shown in Figure 1c. Non-guillotine cutting is 
possible when it is performed using a torch, saw, or laser.  
Non-guillotine arrangement of pieces occurs, in loading and 
packing problems.

Now a technique for solving the problem of creating tem-
plates based on guillotine cuts will be described. At the end, 

Figure 1. Types of cuts; a) guillotine cut; b) not a guillotine cut;  
c) non-orthogonal section
Rysunek 1. Rodzaje cięć; a) cięcie gilotynowe; b) cięcie niegiloty-
nowe; c) przekrój nieortogonalny
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the solution procedure for the general type of cuts will also 
be given. Problem B1 for the case of guillotine cuts will be 
designated as problem (B2).

Two-step method
Karimov and Abbasov (2016) proposed a two-stage solu-

tion procedure (B2). According to this procedure, the knapsack 
problem for (B1) is solved at each stage, to generate feasible 
templates. The required pieces are obtained by cutting the 
material in steps with a guillotine. In a two-step procedure, in 
Step 1 the material is cut into strips, and in Step 2 the strips are 
cut into the required pieces (if required final trimming, can be 
done later). At each step, corresponding tasks about the back-
pack are set. At step 1, for each width ωi, valid templates are 
determined that fit rectangles of width ωj ≤ ωi in strips of size 
ωi × L. The following backpack problem is solved to do this:
 v v q v qt t1 1 1

* max= +…+( )
providing:
 l1q1 + ... + lt qt ≤ L (В2)
where: l1,… lt and q1,… qt are the length and number of pieces, 
respectively, for which ωj ≤ ωi, j = 1,…, t. In step 2, the knap-
sack problem is to fit strips with the size of ωi ∙ L into a rect-
angular material of the size W × L so that
 max( )* *v q v qm m1 1 +…+
providing:
 ω1 q1 + ... + ωm qm ≤ W

There are several methods for solving the one-dimensional 
knapsack problem (Golden, 1976).

Dynamic programming
Dynamic programming (DP) has been quite widely used to 

solve template creation problems. In the publication of Vahidov 
et al. (2008) a procedure for solving (B2) was proposed, in 
which there is no restriction on the number of cut rectangles of 
the same type. If vi is the cost of the i-th piece, then the recur-
sive DP equations for two-step cutting are written as follows:
 F0 (x, y) = max{0, vi, li ≤ x, ωi ≤ y},
 F1(x, y) =  
= max{F(x, y – 1), F(x1, y) + F(x2, y); x ≥ x1 + x2, 0 < x1 ≤ x2}
 F2(x, y) =  
= max{F(x – 1, y), F(x, y1) + F(x, y2); y ≥ y + y2, 0 < y1 ≤ y2}
where: F1(x, 0) = 0, F2(0, y) = 0, F(x, y) = max{F0(x, y), 

F1(x, y), F2(x, y)}.
Here, it is assumed that li and ωi are integers. The solution 

to this equation is quite simple and carried out as follows. 
First, set x = y = 1, changing these values separately. For 
any values of x2 and y2, the value of x1, starting from x1 = 1, 
increases by one each time. In this case, y2 remains constant 
and the maximum is determined from F(x1, y2) + F(x2, y2) and 
F(x1 + x2, y2). This procedure continues until x1 exceeds x2 or 

x1 + x2 becomes greater than L, where the current value of x0 
is fixed. Then, with a fixed current x2, the value of y1, starting 
from y1 = 1, increases each time by one and the maximum is 
determined from F(x2, y1) + F(x2, y2) and F(x2, y1 + y2). This 
continues until y1 > y2 or y1 + y2 > W is completed. Then x2 is 
incremented by one and the previous process is repeated with y2  
fixed until x2 > L is completed. After this, y2 is increased by 
one, and the whole process is repeated, starting with x2 = 1. 
The process stops when y2 exceeds W.

Recursive method
A recursive method for solving the problem (B2) was pro-

posed by Hertz (Aliyeva et al., 2021). It is based on the fol-
lowing recursive property: either the large rectangle is already 
one of the required rectangles, or the first cut line produces 
two rectangles, each cut optimally. This property means that 
every possible first cut of a large rectangle R should be tried. 
However, it is easy to show that a) only those cuts of R that 
are integer multiples of the lengths or widths of the pieces 
should be considered, since any other cut can be reduced 
to a cut of the same value by reducing its size to the nearest 
whole multiple of the lengths or widths of the pieces. Such 
a cut is called canonical, and a cut that contains only one 
type of small rectangle is called homogeneous. In addition, 
it can be shown that b) for each canonical inhomogeneous 
cut R, there is a canonical cut with the same cost, for which  
the coordinate of the first cut line is equal to at most half the 
corresponding size R. This allows to reduce the number of 
cuts considered by half.

At the beginning of the procedure, it is assumed that li ≤ L  
and ωi ≤ W. However, when R is already cut, this relationship 
will not be valid for the resulting rectangles after the cut.  
Let l and ω be (n × 1) vectors with components li and ωi.

There is a finite number of vectors z of dimension (1 ∙ n) 
consisting of non-negative integers such that zl < L and zω < W.  
Let P and Q be the corresponding sets of values of zl and zω. 
Then, appropriate sets are constructed for each x Î P and  
y Î Q to obtain feasible rectangles. An upper bound on the 
cost of cutting each rectangle can be determined for each cut. 
If the cost of a rectangle is proportional to its area, then the 
upper bound on the cost of a rectangle (α, β ) is U(α, β ) = α × β.  
This upper bound on cost can be used to determine whether 
the rectangle should be cut further or not. Properties a) and b) 
and the value of the upper bound on the cost are used several 
times to obtain the optimal cut R (Kerimov and Abbasov, 2016). 

Search tree method
A search tree procedure similar to the procedure described 

above was developed to solve the problem (B2), taking into 
account restrictions for each type of piece. Restrictions on 
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the upper limit can easily be taken into account when solv-
ing one-dimensional problems of material cutting using the 
search tree method. However, when solving two-dimensional 
problems with upper -bound restrictions, these procedures 
are not very effective. Therefore, there is a need to develop 
improved procedures to solve this problem. Such a procedure 
is a search tree procedure. As it is shown in (Abbasov, 2015), 
this procedure is very effective in solving problems with an 
average number of pieces and consists of the following: the 
branches emanating from the root of the tree correspond to 
all possible cuts that can be made on the rectangular material. 
The node at the end of the branch corresponds to the rectangles 
resulting from the corresponding cut. In the subsequent knot, 
one of the rectangular pieces is selected to make the next cuts. 
Thus, a tree node corresponds to all rectangles resulting from 
cuts according to the paths from the tree root to this node. The 
cuts can be made along the length (x – cut) or width (y – cut) 
of the rectangular piece. The x – cut (or y – cut) is made so 
that the sum of the lengths (respectively, widths) of one or 
more pieces can be precisely adjusted to the resulting length 
or width of the rectangular material. Such cuts are called 
normal. The procedure for constructing normal cuts is based 
on properties a) and b). In addition, it should be considered 
that among such cuts, no two should produce the same pat-
terns. This requirement is easy to implement if to make cuts 
of non-decreasing size. Cutting can be also stopped at a node 
if it is undesirable or impossible to cut any rectangle at that 
node. If at some node all the rectangles are not cut further, then 
no branches come out of this node. An elegant feature of this 
procedure is the way it determines the cost limits. An upper 
bound on the cost of the solution is obtained for each node. 
This is done as follows. At each node, there are rectangles 
that are not cut further, and rectangles that are candidates for 
further cutting (branching). To determine the best permissible 
arrangement of pieces in rectangles that do not branch (are not 
cut), a standard program for solving the transport problem is 
used (Ragimova, 2013). For each of the rectangles that will 
still branch, to determine the best arrangement of pieces in 
these rectangles, a DC procedure of the type described in 
solving Problem B2 is used. This arrangement is obtained 
by relaxing the constraint on the maximum desired number 
of pieces of each type, as a result of which the arrangement 
of pieces obtained by the search tree method may turn out to 
be unacceptable. If it turns out to be valid, then the resulting 
location is the best possible, and no further branching is needed 
from this node. Otherwise, this node is a candidate for further 
branching. Therefore, the current best feasible solution must 
be compared with the solution after each branching. Nodes 
where the upper cost limit is less than the cost of the current 
solution should also be cut off. Various rules can be used to 

branch from nodes. The procedure ends when there are no 
more nodes left to branch.

Heuristic method
Heuristic rules that can be used to create valid templates 

(placements) are as follows: a) start packing with the largest 
size, then the next smaller one, etc.; b) start packaging with the 
smallest size, then the next larger one, etc.; c) start from the 
corner (usually the bottom left); d) start the package from the 
edge and move inwards or e) start from the center and move 
towards the edges. A heuristic procedure based on rule c) was 
proposed in the work of Kerimov (1999) to solve the problem 
(B1) related to determining locations for loading a transport pal-
let. When loading, only one one-piece size is taken into account. 
The heuristic is to position the load along the four edges of the 
pallet. These placements are determined by the DC method. The 
piece can be placed from the edge along the length or width. 
The placements obtained along the edges are built up inward 
so that there is no overlap in the center. If overlap occurs in the 
center, the depth of the internal placements changes.

Dialogue graphic method
Let' us consider another new solution procedure (B2), based 

on an interactive graphical solution method using a digital 
computer. As it is already mentioned, the main difficulty in 
solving (B2) is that the templates must be valid. However, if 
the constraint in the problem (B2) is replaced by the constraint.
 a1q1 + a2q2 + ...+ amqm ≤ A – Î (B3)

It is easy to see that admissible templates can be obtained 
from solution (B3) for some Î ≥ 0. For rectangular or triangular 
pieces one can assume Î = 0, but for pieces of other shapes 
one can assume Î > 0, which allows many unacceptable tem-
plates to be excluded from consideration. By varying Î, one 
can obtain different solutions to (B3). These solutions can then 
be checked on a digital computer plotter and a valid solution 
can be selected from them. Thus, the feasible solution (B2) is 
obtained by the dialog method using a graphical terminal. The 
advantage of this method is that it can be used for templates 
of any shape. Knowing the upper and lower bounds of Î for 
a given template cut shape can be very helpful in this procedure. 
The bounds Î available for some template shapes are given 
and the application of this procedure is described in the work 
of Ragimova (2013).

Methods for solving problems of cutting materials

Linear programming
If we remove the integer requirement in (A1), then the 

resulting problem is a linear programming (LP) problem, 
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which is called problem (A2). Note that if xj are not necessar-
ily integers, then solution (A2) is relatively easier than (A1). 
Moreover, in many cases, especially for large values of N, the 
values of xj are large enough that rounding to integer values 
(that satisfy the constraints) has little effect on the value of 
the objective function. Therefore, solution (A2) turns out to 
be almost equivalent to solution (A1).

Problem (A2) can be solved by the column construction 
method described in (Dyson and Gregory, 1974). This approach 
was proposed for guillotine cutting. Let column (q1,…, qm) be 
a valid template. If v1,…, vm are simplex factors correspond-
ing to the optimal solution (A2), then the column (q1,…, qm) 
is determined from the solution to the problem (B2) of creat-
ing a template. To solve (B2), a two-stage procedure is used. 
Consequently, to solve problem (A2), the LP procedure can be 
used, in which problem (B2) must be solved at each iteration.

In another formulation a two-stage guillotine cutting prob-
lem is proposed, which is solved as a two-stage LP problem. 
The first stage corresponds to the process of cutting the rectan-
gular material into long strips, the width of which corresponds 
to the width of the required rectangles, and the second stage 
corresponds to the process of cutting the strips into rectangles 
of the required length. The resulting LP problem can be solved 
directly using an algorithm for solving a one-dimensional cut-
ting problem or using the decomposition procedure (Rahimova 
and Mansurova, 2022).

Heuristic procedures
Heuristic procedures are also used to solve two-dimensional 

problems. For problem (A1), the general heuristic procedure 
is as follows:

Step 1. Select template acceptance criteria. One such cri-
terion that a uniform template must satisfy is based on the 
proportions of the maximum cut width and the segment scraps. 
According to this criterion, a valid template must satisfy the 
specified proportions. This admissibility criterion is illustrated 
in Figure 2. Appropriate acceptance criteria can be selected 
for other types of cuts.

Step 2. Combinations of pieces of only one type are tried, 
and templates that satisfy the selected criterion are chosen,  
if they exist.

Step 3. Combinations of two types of pieces are tried. 
Templates that satisfy the selected criterion are chosen.

Step 4. Combinations of pieces of three types are tried 
and templates are chosen that satisfy the selected criterion.  
If desired, combinations of more types can be tried. An exam-
ple of a homogeneous template obtained using this procedure, 
consisting of three types of pieces, is shown in Figure 2.

Step 5. If the best templates obtained cover all the required 
pieces, the procedure stops. Otherwise, the criterion weakens 

and proceeds to step 2. The procedure continues until a suf-
ficient number of templates is obtained to cover all the pieces.

This heuristic procedure was used for problems with ho-
mogeneous templates. In the work of Adamowicz and Albano 
(1976) it is assumed that the required number of pieces of 
each type is limited, and a modification of the above heuristic 
procedure is used. The procedure differs from that described 
here in that if the required placement cannot be found for 
a sheet of a given size, then an incomplete sheet is taken and 
combinations of pieces that are placed on this incomplete sheet 
are tried. In the incomplete stage, only guillotine placements 
are taken. Placements of this type are shown in Figure 3. After 
trying all combinations, the best combination for the partial 
sheet is selected using the DP-based procedure.

Figure. 2. Admissibility criterion (ω ⁄W) – width criterion
Rysunek 2. Kryterium dopuszczalności (ω/W) – kryterium 
szerokości

Figure 3. Typical placement obtained heuristically
Rysunek 3. Typowe rozmieszczenie uzyskane heurystycznie

Dialog optimization
The dialog procedure for solving two-dimensional problems 

of cutting material is a combination of the LP procedure and 
the dialog graphic procedure for creating a template (column 
of matrix Q). An application of this procedure to the problem 
of placing circular disks on a circular plate is given in (Aliyev, 
2023). This interactive optimization procedure is also used 
for cutting rectangular pieces from rectangular material. The 
resulting placements are shown in Figure 4. This procedure 
has several advantages. Firstly, it can be used for any template 
shape. Secondly, it is very similar to the practical way of creat-
ing templates. In addition, this procedure allows the designer 
to have the best possible template ready to use, rather than 
having to recognize templates in a heuristic way. Any type of 
template can also be created using this procedure, including 
free-cut templates.
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Modification and applications

Until now, the basic methods for solving problems of cut-
ting materials have been considered. However, in practice, 
several related issues arise that require modification of the 
basic techniques for special applications. These modifications 
and applications are discussed below.

Some practical issues in the two-dimensional material cut-
ting problem are as follows:
a)  Leaf orientation or structure.
b)  There is material that may not be of the same quality ev-

erywhere. Some parts may have defects and some parts 
may be of better quality than others. In this case, the goal 
is to minimize the cost of the resulting pieces.

c)  The shape of the cut pieces is not necessarily rectan-
gular. Cutting into irregularly shaped pieces – a fairly 
common situation when cutting fabric, leather, and sheet  
metal.

d)  Available material may be of different sizes.
e)  Once the optimal templates for cutting small rectangles 

from several materials have been determined, the order in 
which these templates are used becomes important from 
a practical point of view. Indeed, the order will matter if 
different machine settings are required for the production 
of different templates and the cost of adjustments is very 
high. Therefore, setup costs may influence the determina-
tion of template types. In such a situation, the goal of op-
timization is to minimize the number of trims and the cost  
of adjustments.

The orientation of the sheet must be taken into account 
in order to determine where to make the cut. However, when 
the orientation of the sheet is already determined, then to 
define which templates to cut from the sheet, the appropri-
ate technique is used. A relatively more difficult case occurs 
when individual areas on the sheet are defective (and can be 
easily directed before cutting). It is assumed that these de-
fective places are limited by rectangles and are not allowed 
to enter the embedded material. The purpose of optimiza-
tion is to obtain the largest number of pieces with minimum 
waste. In this case, the DC procedure can be used to determine 
the best templates. However, it is difficult to apply a recur-
sive equation of a DC problem (B2) to solve this problem.  
However, you can try to apply the one-dimensial version of 
the recursive equation.

With a one-dimensional formulation, the sheet is divided 
along the length into parts which in turn are cut into strips. 
The cost of each part is determined by placing only one type 
of template. The presence of defects is taken into account 
when assessing this part, defects affect the number of pieces 
that give the maximum cost. The detailed procedure for solv-
ing this problem is given in (Nemhauser, 1967). In addition, 
in this task, it is proposed that individual sections should be  
made short to speed up the procedure for use in a real produc-
tion process.

As for the problem of obtaining the maximum possible 
number of irregularly shaped pieces from a given number of 
pieces of material: since pieces of irregular shape are allowed, 
the cuts can be of the most general type (arbitrary). This prob-
lem is considered in (Nemhauser, 1967) in connection with 
the problem of template marking. To simplify, the problem 
can be solved by approximating irregular shapes with several 
rectangles as follows. Various irregular figures are combined 
into groups of two or three figures. These groups are selected 
in such a way that the cutting area is minimal. Grouped shapes 
are placed in rectangular area shapes. The placement of these 
rectangular shapes is then adjusted so that they fit within the 
boundaries of the sheet. The original problem is reduced to 
the task of cutting rectangular pieces from a given amount of 
material. The goal of optimization is to maximize the cost of 
the pieces.

As for the function linearly dependent on the area, the for-
mulation of the problem is similar to the problem (B1). The 
difference in this case is that the cuts can be of any type. The 
developed procedure allows the creation of optimal templates 
for materials of multiple sizes in one pass of the procedure 
without restrictions on the number of pieces of each type ob-
tained. If the cost of the various shapes is known in advance, 
then the rectangles can be ordered so that v1 ⁄a1 > ... > vm ⁄am.  
Otherwise, any appropriate order can be chosen.

Figure 4. Optimal templates obtained using the dialog procedure
Rysunek 4. Optymalne szablony uzyskane za pomocą procedury 
dialogowej

Table 1. Example: size of large rectangle = (8.5)
Tabela 1. Przykład: rozmiar dużego prostokąta = (8,5)

Size of small rectangles Need
(3.2) 70
(5.3) 40
(6.2) 60
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For this problem, the recursive DP equation has the form:

 F L W
v F

F L W
i x x

i i

i x x

( )
( )

, max
max ,

,
=

+ ( )

 ∑

−

remaining rectangles

1

DP recursion develops in such a way that only one of the 
forms is placed at each stage. Namely, at each stage, only one 
placeable rectangle, starting from i = 1, is placed on a hypo-
thetical sheet (called index rectangle), which is specified by the 
index pair (Lx, Wx). This rectangle can be placed at the corner 
of the index rectangle or at any point inside. The latter case is 
more general and provides more combinations for placing the 
remaining rectangles. At each stage, the dimensions of the index 
rectangle increase from a unit square (1.1) to the maximum 
dimensions (L, W) in unit increments. At stage i, one of the 
following options may occur for each set of values (Lx, Wx).
1.  The dimensions (li, wi) of the allocated rectangle are larger 

than the index rectangle.
2.  The index rectangle and the placement rectangle are equal 

in size.
3.  There is only one rectangle left in the x or y direction.
4.  More than one rectangle remains in the x and y direction.

These options, together with the corresponding values of 
Fi (Lx, Wx) are shown in Figure 5. Here F(i–1) (Lx, Wx) denotes 

that there is no allocation for the current values of (Lx, Wx)  
and Fi (∑ remaining rectangles) gives the values of Fi to all 
rectangles resulting from placing the rectangle (li, ωi) on the 
index rectangle. The recursive DP procedure at each place-
ment provides an optimal arrangement of rectangles in  
(Lx, Wx), i.e., this procedure results in an optimal arrangement 
in index rectangles with sizes from (1.1) to (L, W). If L and W 
are the maximum length and maximum width, respectively, 
among all dimensions, then this procedure gives the optimal 
arrangement for all dimensions of the material.

Another procedure for solving a problem with free-form 
templates is the interactive graphical procedure described 
above.

Let us now consider the above modification in paragraph 
“d”, i.e. the option where there is material of various sizes, and 
not just one, as in problem (A2). In this case, it is required to 
obtain a given number of rectangular pieces of various speci-
fied sizes from rectangular pieces of material of various sizes. 
An application of this problem is discussed in (Nemhauser, 
1967). Considering the cuts to be guillotine, this problem can 
be solved by a simple generalization of the procedure for solv-
ing the problem (A2). The generalization consists of solving 
more knapsack problems at each iteration. If the number of 

Figure 5. Possible results with recursion using the DP method
Rysunek 5. Możliwe wyniki z rekurencją wykorzystującą metodę programowania dynamicznego (DP)
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different material sizes is large, this procedure requires a very 
long computation time. However, it turns out that if the same 
procedure is applied in a different way, its use becomes quite 
effective. This option is discussed below.

The idea here is to reverse the procedure. Namely, for 
a given need for rectangular pieces, a minimum number of 
workpieces of various sizes are first assembled, assuming that 
the assembled workpieces do not exceed the given maximum 
lengths and widths of the material. Then sheets of material are 
cut to dimensions equal to or close to the dimensions of the 
workpieces to obtain pieces of specified sizes. This procedure 
will result in minimal waste. The operation of assembling 
workpieces can be called primary, and the operation of cutting 
pieces of given sizes from sheets of material with dimensions 
equivalent to the dimensions of the assembled workpieces can 
be called secondary.

As it can be seen in Fiqure 6, for the special application 
described in (Aliyev and Aliyeva, 2017), the process of assem-
bling blanks from small rectangular pieces involves uniform 
cuts. In Figure 6a, all but one type of piece was used, in Figure 
6b – two types, and in Figure 6c – three types (the dimensions 
of the assembled workpiece are also shown here). In general, 
any number of types of pieces can be used to assemble a work-
piece. From the point of view of cutting material, this assembly 
process is identical to the construction of templates, but these 
templates must be uniform. Uniform templates are based on 
special types of guillotine cutting of material into strips, each of 
which corresponds to only one type of rectangular piece. Thus, 
the placement of the view shown in Figure 7 is unacceptable. 

The problem for homogeneous templates is relatively simpler 
than the problem for the general type of guillotine cutting.  
In general, for various applications, guillotine cutting is ap-
plicable in the primary operation of constructing assembled 
workpieces. For the application considered, the primary prob-
lem reduces to problem (A2), except that the resulting place-
ments must be homogeneous, as it is shown in Figure 6. This 
problem can be solved by the LP procedure used to solve (A2).

Once the dimensions of the workpieces are determined, 
the secondary operation is reduced to selecting the source  
material that is closest in size to the assembled workpieces 
and cutting.

The templates obtained by solving the problem (A2) ac-
cording to the minimum waste criterion will, in the general 
case, be statically random. The difficulty here is that when 
sorting through such templates during the cutting process, the 
transition from one template to another may require a sharp 
readjustment of the machine. Additional readjustment is also 
required if the material has different dimensions. This leads 
to a new interesting aspect of the problem of cutting ma-
terial, namely minimizing setup time. Dyson and Gregory 
(1974) considered this problem in relation to cutting sheets  
of glass.

There are two approaches to solving this problem. The first 
is to determine the optimal templates using the LP procedure 
and then arrange them so as to obtain the minimum readjusting 
costs. The second approach is to use a procedure that simulta-
neously minimizes waste and readjusting time.

In the first approach, to minimize the readjusting time in 
the production of templates obtained by the LP procedure for 
the problem (A2), a procedure like the one for solving the 
traveling salesman problem can be used. In this case, each 
template is considered as a city, and the cost matrix when 
ordering templates can be determined by the number of new 
pieces that must be cut for successive templates. The num-
ber of new pieces that must be cut if template A is followed 
by template B is equal to the number of pieces contained in 
template A (not B). A fictitious template is used to properly 
count new pieces. However, this procedure can be very  time-
consuming when it comes to computations.

Figure 6. Construction of assembled workpieces; ω – workpiece width, l – workpiece length
Rysunek 6. Konstrukcja montowanych elementów; ω – szerokość elementu, l – długość elementu

Figure 7. Inappropriate placement
Rysunek 7. Niewłaściwe ułożenie
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Some heuristic procedures for implementing the second 
approach to determine templates that minimize waste and 
readjusting costs are discussed.

Conclusion

Two-dimensional problems of material cutting are quite 
common in practice. This paper examines several techniques 
available in the literature for solving many of these problems. 
With the increasing applications of digital computers to control 
production processes, these techniques can be easily pro-
grammed and used to make more accurate and cost-effective 
decisions.
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