Instytut Nafty i Gazu - Państwowy Instytut Badawczy

TYTUŁ: Zabiegi kwasowania w stymulacji wydobycia z odwiertów – projektowanie oparte na badaniach laboratoryjnych/Acidizing treatments in wellbore stimulation – design based on laboratory research

 

 

Autorzy: Marek Czupski, Piotr Kasza

 

 

 

218 czupski kasza zabiegi kwasowania

DOI: 10.18668/PN2017.218

ISSN 2353-2718

ISBN 978-83-65649-24-9

Opis PL

Kwasowanie jako metoda stymulacji wydobycia ma zastosowanie zarówno w formacjach piaskowcowych, jak i węglanowych. Bardzo dużą zaletą tej technologii jest fakt, że zwrot kosztów poniesionych na przeprowadzenie zabiegu i poprawę produktywności odwiertu następuje dużo szybciej, niż dzieje się to w przypadku wykonania zabiegu hydraulicznego szczelinowania. W formacjach piaskowcowych zabieg ma na celu głównie rozpuszczenie lub usunięcie uszkodzenia strefy perforacji oraz przestrzeni porowej formacji w pobliżu odwiertu. Kwas, przepływając przez system porów, rozpuszcza zalegające w nim ciała stałe oraz minerały i ziarna uwięzione w zwężeniach porów [29]. Tego typu zabieg ma szansę powodzenia, jeżeli uszkodzenie formacji jest spowodowane przez minerały i ciała stałe, które mogą być usunięte przez kwas. W większości przypadków nie można jednak oczekiwać znacznego wzrostu produkcji po przeprowadzeniu kwasowania matrycowego nieuszkodzonej strefy przyodwiertowej.

Natomiast w formacjach węglanowych kwas rozpuszcza skałę w sposób niejednorodny, tworząc kanały o dużej przepuszczalności, zwane otworami robaczkowymi. Powstają one z powodu naturalnej niejednorodności przepuszczalności matrycy skalnej, w związku z którą również przepływ cieczy kwasującej jest zróżnicowany w każdym jej elemencie. W obszarach o większej szybkości przepływu następuje większe rozpuszczanie matrycy, a to powoduje dodatkowy wzrost przepływu w tych strefach. Kanały mogą tworzyć się bardzo szybko, ponieważ opór przepływu jest w nich nieznaczny w porównaniu z otaczającą je (oryginalną) przestrzenią porową.

Celem zabiegu kwasowania jest w tym przypadku zmniejszenie współczynnika „skin efektu" poprzez obejście uszkodzonej strefy przyodwiertowej i wzrost efektywnego pro­mienia odwiertu. W naturalnie szczelinowatych złożach węglanowych otwory robaczkowe łączą ze sobą istniejące szczeliny, tworząc długie i głęboko penetrujące w formację kanały przepływowe. W formacjach pozbawionych naturalnych szczelin długość otworów robacz­kowych może wynosić około 1–2 m, natomiast przepuszczalność strefy przyodwiertowej zawierającej otwory robaczkowe jest zwykle kilka rzędów wielkości większa od oryginalnej przepuszczalności skały.

Prezentowana monografia stanowi kompendium informacji na temat zabiegów kwasowania wykorzystywanych do stymulacji wydobycia z odwiertów.

Rozdział 1 zawiera ogólny podział zabiegów z użyciem kwasów na: wanny kwasowe, kwasowania matrycowe i szczelinowania kwasem. Przedstawiono w nim krótkie charakterystyki każdego z tych zabiegów oraz etapy, które powinien obejmować proces prawidłowego przygotowania zabiegu kwasowania.

Rozdział 2 przedstawia szczegółowy opis czynników, które mogą być przyczyną uszkodzenia formacji w strefie przyodwiertowej, takich jak: drobne cząstki obecne w złożu czy też minerały ilaste. Do uszkodzenia przepuszczalności strefy przyodwiertowej może dochodzić również w wyniku następujących prac wykonywanych w odwiercie: wiercenie, udostępnianie, eksploatacja, stymulacja, nawadnianie czy zaawansowane metody wydoby­cia (EOR). W rozdziale tym opisano również techniki obejmujące pomiary wykonywane w odwiercie oraz testy laboratoryjne używane do określenia uszkodzenia formacji.

Rozdział 3 dotyczy doboru składu cieczy kwasującej. Opisano w nim podstawowe rodzaje kwasów oraz różnych dodatków, które mogą wchodzić w skład cieczy zabiegowych, takich jak: inhibitory korozji, środki powierzchniowo czynne, alkohole, mutual solvents, środki do kontroli jonów żelaza, stabilizatory minerałów ilastych, środki stabilizujące drobne cząstki zawarte w formacji, środki spieniające, inhibitory wytrącania się osadów węglanu wapnia i siarczanu wapnia oraz środki zmniejszające opory przepływu.

Rozdział 4 zawiera opis badań laboratoryjnych, które są niezbędne do właściwego zaprojektowania zabiegu kwasowania. Przedstawiono w nim testy przeprowadzane w celu oceny petrofizycznych i chemicznych właściwości skał złożowych oraz badania wykonywane w celu zaprojektowania oczyszczania armatury otworowej przed właściwym zabiegiem kwasowania. Jednak najbardziej obszerną jego część stanowi opis testów wykonywanych w celu dobrania odpowiednich dodatków do cieczy kwasujących. Rozdział ten kończy opis badań przepływowych na rdzeniach, które służą do ostatecznej weryfikacji efektywności zaprojektowanej cieczy kwasującej, między innymi na podstawie wizualizacji otworów robaczkowych wytworzonych w węglanowych korkach rdzeniowych.

Rozdział 5 dotyczy zastosowania badań przeprowadzonych w Zakładzie Stymulacji Wydobycia Węglowodorów w Instytucie Nafty i Gazu – Państwowym Instytucie Badaw­czym do zaprojektowania i przeprowadzenia zabiegów w różnych formacjach złożowych. Opisano w nim efekty zabiegów zrealizowanych w odwiertach usytuowanych w formacjach czerwonego spągowca oraz dolomitu głównego przy użyciu różnych cieczy i metod ich zatłaczania.

Rozdział 6 podsumowuje informacje zawarte w niniejszej publikacji. Umieszczono w nim również zalecenia i rekomendacje dotyczące przyszłych prac o tematyce stymulacji wydobycia metodą kwasowania.


Opis EN

Matrix acidizing as a method of reservoir stimulation, is applicable to both sandstone and carbonate formations. One major advantage of using this technology, is the fact, that the reimbursement of the costs incurred for the execution of the treatment and the im­provement of the productivity of the wellbore, takes place much faster than, for example, in the case of hydraulic fracturing treatment. In sandstone formations, the treatment is primarily to dissolve or remove perforation damage, and the porous space of the formation near the wellbore. The acid flowing through the pore system, dissolves solids deposited in it, as well as minerals and grains trapped in the contraction of pores [29]. This type of treatment is likely to succeed, if formation damage is caused by minerals and solids that can be removed by acid. In most cases, however, one cannot expect a significant increase in production after execution of matrix acidizing, if no damage is present.

However, in carbonate formations, the acid dissolves the rock in a heterogeneous manner, creating channels with high permeability called wormholes. They are formed due to natural heterogeneity of the rock matrix permeability, in connection with which, also the flow of the acidizing liquid is varied in each of its elements. In areas where the flow rate is higher, the dissolution of the matrix is increased, and that causes an additional in­crease in flow in those zones. The channels can be formed very quickly, because their flow resistance is insignificant, when compared to the surrounding (original) pore space.

The purpose of the acidizing treatment in this case, is to reduce the "skin" factor by bypassing the damaged near-wellbore zone and to increase the effective wellbore radius. In the natural fractured carbonate reservoirs, the wormholes connect the existing fractures, forming long flow channels deeply penetrating the formation. In formations devoid of natural fractures, the length of wormholes can be about 1 to 2 m, while the permeability of the near-wellbore zone containing wormholes, is usually several orders of magnitude larger than the original permeability of the rock.

The presented monograph consists of 5 chapters.

Chapter 1 contains a general division of acid treatments into: acid baths, matrix acidizing and acid fracturing. It presents brief characteristics of each type of these tre­atments and the stages that should be included in the proper preparation process of the acidizing treatment.

Chapter 2 presents a detailed description of factors that may be the cause of formation damage in the near-wellbore zone, such as: fine particles present in the reservoir or clay minerals. The permeability of the near-wellbore zone can also be damaged as a result of the following works performed in the well: drilling, completion, production, stimulation, water flooding, or enhanced oil recovery (EOR). This chapter also describes techniques, including wells and laboratory tests used to determine damage to the formation.

Chapter 3 relates to the selection of the acidizing liquid composition. It describes the basic types of acids and various additives that can be included in the composition of treatment liquids, such as: corrosion inhibitors, surfactants, alcohols, mutual solvents, iron control agents, clay control additives, agents stabilizing fine particles included in the formation, foaming agents, inhibitors of precipitation of calcium carbonate and calcium sulphate sediments and friction reducers.

Chapter 4 contains a description of laboratory tests that are necessary for the proper design of the acidizing treatment. It presents the tests conducted to assess petrophysical and chemical properties of reservoir rocks and the tests conducted to design the tubing cleanout process prior to proper acidizing treatment. Its most extensive part, however, is the description of the tests conducted to select suitable additives for acidizing liquids. The chapter concludes with a description of core flow tests that are used for the ultimate verification of the designed acidizing liquid effectiveness, inter alia based on the visualization wormholes formed in carbonated core plugs.

Chapter 5 concerns the use of the tests conducted in INiG – PIB Department of Production Stimulation for the design and execution of treatments in various reservoir formations. It describes the effect of the treatments performed in wellbores located in the formations of Rotliegend and Main Dolomite using various liquids and methods of their injection.

Chapter 6 summarizes the information contained in this publication. It also conta­ins recommendations and guidelines for further works on production stimulation using acidizing method.

  

Cena egzemplarza: 60 zł netto (plus 5% VAT)

Koszt przesyłki: 5 zł brutto za sztukę – list polecony

Zamówienia prosimy składać e-mailowo: nafta-gaz@inig.pl lub telefonicznie 12 617 76 32.

 

 
 
 

TYTUŁ: Odzwierciedlenie budowy geologicznej brzeżnej części Karpat i ich podłoża (SE Polska) na podstawie reprocessingu i reinterpretacji profili sejsmicznych 2D/Geological structures mapping of the marginal part of the Outer Carpathians and their basement (SE Poland) based on reprocessing and reinterpretation of 2D seismic profiles

 

 

Autorzy: Andrzej Urbaniec, Łukasz Bajewski, Aleksander Wilk

 

 

Recenzenci:
Prof. dr hab. inż. Kaja Pietsch
Dr hab. inż. Michał Stefaniuk

 

 

 

218 czupski kasza zabiegi kwasowania

ISBN: 978-83-65649-25-6
ISSN: 2353-2718
DOI: 10.18668/PN2018.219

Opis PL


Głównym celem prezentowanej pracy było stworzenie kompleksowego modelu geologicznego badanego rejonu brzeżnej strefy Karpat zewnętrznych wraz z zapadliskiem przedkarpackim, na podstawie interpretacji strukturalnej profili sejsmicznych 2D. Obszar badań usytuowany jest w południowo-wschodniej Polsce. Analizowany rejon cechuje się dużym stopniem skomplikowania budowy geologicznej ze względu na obecność licznych stref nasunięć w obrębie utworów jednostek karpackich i miocenu sfałdowanego, jak również obecność kilku dużych stref dyslokacyjnych o różnych kierunkach przebiegu. Najniższe piętro strukturalne, występujące w podłożu zapadliska przedkarpackiego, stanowi w interpretowanym rejonie seria anchimetamorficznych skał neoproterozoiku, związanych genetycznie z blokiem małopolskim. Autochtoniczny kompleks osadów klastycznych, z wkładkami ewaporatów, wieku mioceńskiego, o bardzo zróżnicowanej miąższości (od około 150 m do ponad 3300 m) tworzy środkowe piętro strukturalne analizowanego rejonu. Najwyższe piętro strukturalne reprezentują z kolei utwory allochtoniczne pokrywy tektonicznej, które w analizowanym obszarze włączane są głównie w obręb trzech dużych jednostek tektonicznych: stebnickiej, borysławsko-pokuckiej i skolskiej. Dodatkowo wyróżniane jest pasmo łusek zgłobickich, będących stosunkowo wąską strefą osadów mioceńskich o zróżnicowanym stopniu deformacji tektonicznej.
Dwa z dziewięciu analizowanych profili sejsmicznych poddano reprocessingowi w Zakładzie Sejsmiki Instytutu Nafty i Gazu – Państwowego Instytutu Badawczego, a wyniki uzyskane na podstawie tego reprocessingu zostały uwzględnione w trakcie interpretacji geologicznej. Odpowiedni dobór zarówno sekwencji przetwarzania, jak i parametrów aplikowanych do poszczególnych procedur, a także weryfikacja każdego etapu przetwarzania poprzez prowadzoną na bieżąco interpretację geologiczną przyniosły w efekcie nieco inne odwzorowanie niektórych cech budowy geologicznej rejonu. Przeprowadzona interpretacja strukturalna dostarczyła nowych informacji, które mogą być wykorzystane do odtworzenia poszczególnych etapów rozwoju tektonicznego analizowanego obszaru. Przedstawiony model strukturalno-tektoniczny obrazuje znaczny stopień skomplikowania budowy geologicznej analizowanego rejonu oraz akcentuje wieloetapowość zjawisk tektonicznych zachodzących w poszczególnych okresach geologicznych. Obecny obraz strukturalny jest kompilacją efektów szeregu stopniowo nakładających się na siebie procesów zachodzących w kolejnych epokach geologicznych. Przedstawiona koncepcja zakłada, że część głównych dyslokacji w analizowanym rejonie to strefy o bardzo starych założeniach tektonicznych (związanych z orogenezą hercyńską, a być może nawet starszych), które w swojej historii były wielokrotnie reaktywowane w różnych reżimach naprężeń. W trakcie etapu nasuwczego Karpat dochodziło do zderzenia górotworu ze strukturami podłoża, ułożonymi skośnie do głównego kierunku nasuwczego. Skośna kolizja powodowała reaktywację struktur podłoża, podczas gdy w obrębie jednostek karpackich dochodziło do powstawania uskoków przesuwczych i nasunięć pozasekwencyjnych. Ostatni etap reaktywacji wspomnianych dużych stref uskokowych miał miejsce już po nasunięciu utworów fliszowych jednostki skolskiej i zachodził w reżimie przesuwczym.

Opis EN


The main aim of the presented work was to construct a complex geological model for the research area, based on the 2D seismic profiles interpretation. The study area is situated in south-eastern Poland in the marginal zone of the Outer Carpathians.
The analyzed region is characterized by a very complicated geological structure. The presence of numerous thrust zones in the Carpathian units, as well as large-scale faults cutting the rock series of lower geological stages, are typical. The series of Neoproterozoic anchimetamorphic sedimentary rocks of the Małopolska Massif, form the basement of the Carpathian Foredeep in the analyzed region. The complex of the autochthonous Miocene sediments, characterized by variable total thickness (from 150 m to more than 3300 m) and facies variability, represent the middle stage of the study area. The youngest stage consists of allochtonous tectonic units (Stebnik, Boryslav-Pokutya and Skole) of the Carpathian orogen. Furthermore Zgłobice Thrust-Sheet Belt is distinguished, as a narrow zone of Miocene sediments with varying levels of tectonic deformation. Two off the nine interpreted profiles were reprocessed in the Seismic Department of the Oil and Gas Institute - National Research Institute in Krakow, Poland. Proper selection of both the processing sequence and parameters applied to specific procedures, as well as verification of each stage of processing by simultaneous geological interpretation, resulted in a slightly different mapping of the geological structures.
Structural interpretation of the current version of the seismic sections, provides new information that could be used to reconstruct individual stages of the tectonic development in the analyzed area. The constructed tectonic model emphasizes the complexity of the geological structure. Presented concept assumes that some of the major fault zones are very old tectonic lines (related to the Variscan orogenesis, and maybe even older), which have been repeatedly reactivated under different stress conditions. The diagonal collision of the Carpathian orogen and the basement elevations induced a reactivation of the major faults. Strike-slip faults and out-of-sequence thrusts were generated within the Carpathian units. The final phase of the large faults reactivation took place after the latest thrusting movements of the Outer Carpathians.
  

Cena egzemplarza: 60 zł netto (plus 5% VAT)

Koszt przesyłki: 5 zł brutto za sztukę – list polecony

Zamówienia prosimy składać e-mailowo: nafta-gaz@inig.pl lub telefonicznie 12 617 76 32.

 

 
 
 

TYTUŁ: Nowe spojrzenie na budowę geologiczną Karpat – ujęcie dyskusyjne

 

AUTOR: Leszek Jankowski

 grafika m

OPIS PL:

Niniejsza publikacja poświęcona jest przede wszystkim kompleksom chaotycznym występującym w Karpatach. Omawiana jest tu ich geneza i pozycja w strukturach górotworu. Z różnego rodzaju kompleksów chaotycznych o strukturze „bloki w matriks" najwięcej uwagi poświęcono melanżom tektonicznym – nieomawianym w polskich opracowaniach naukowych. W publikacji przedstawiono także dyskusyjne ujęcie historii basenowo-tektonicznej. Krytycznie przedyskutowano m.in. powszechnie przyjmowaną koncepcję Karpat jako orogenu związanego z procesem subdukcji. Krytyce poddano także pogląd o istnieniu szerokich stref oceanicznych mających występować w czasie rozwoju basenu Karpat. Zaproponowano znacznie prostszą historię rozwoju basenowego. Basen Karpat wypełniony osadami składającymi się na Karpaty wewnętrzne i zewnętrzne był, według przedstawionego tu ujęcia, jedną strefą basenową, podlegającą zmianom i przemieszczaniu. W przyjętym w niniejszej publikacji założeniu, proces formowania basenu Karpat odbył się na pasywnej krawędzi platform wschodnio- i zachodnioeuropejskiej, rozciąganej w procesie ekstensji oraz ponownie zestalonej w procesie zamykania basenu i kolizyjnego etapu deformacji tektonicznej. We wczesnej kredzie kończy się okres ekstensji (tworzenia przestrzeni akomodacyjnej w geometrii półrowów) i zaczyna proces inwersji i zamykania, wykształcony też zostaje basen przedpola. Początek formowania typowego basenu przedpola znaczy pojawienie się inoceramowego systemu depozycyjnego. Pojawiają się facje „fliszowe"; najpierw w obszarze Karpat wewnętrznych. Zatem od późnej kredy basen Karpat zewnętrznych jest basenem przedpola (ang. foredeep basin) w stosunku do wcześniej zestalonej części górotworu (któremu odpowiada rejon Karpat zewnętrznych). Wobec wspólnej historii basenowo-tektonicznej tradycyjny podział Karpat na tzw. Karpaty wewnętrzne i zewnętrzne jest podziałem sztucznym i nie ma żadnego uzasadnienia. Obszar tzw. Karpat wewnętrznych i zewnętrznych przeszedł te same etapy deformacji tektonicznych.

Sam proces zamykania i kompresji charakteryzował się przemieszczaniem układu: orogen – (ang. backstop) – basen przedpola (foredeep basin) – wypiętrzenie przedorogeniczne (ang. forebulge). Obszar skłonu basenu przedpola i wypiętrzenia dostarczał materiału klastycznego do basenu, pełniąc rolę czasowo istniejących „kordylier". Na charakter i rozkład facji w niektórych okresach wpływ mają także eustatyczne zmiany poziomu morza. Z czasem centrum depozycji przenosi się w kierunku północnym. Proces migracji basenu przedpola trwał aż do zatrzymania w późnym miocenie.

Zaproponowano kilka modeli ukazujących rozwój oraz rozprzestrzenienie i wzajemne relacje facji w poszczególnych okresach. Ponadto zaproponowano modele rozwoju geologicznego regionu okołopienińskiego. Uznawany za rejon graniczny obszar Pienińskiego Pasa Skałkowego jest jedynie pozostałością po kolapsie późnokredowego frontu orogenicznego. W rejonie polskich Karpat Pieniński Pas Skałkowy jest kompleksem chaotycznym o genezie sedymentacyjnej, o typie „bloki w matriks", uformowanym w wyniku kolapsu frontu orogenicznego i zrzucenia bloków do tworzącego się basenu przedpola, czyli systemu inoceramowego.

Poszczególne facje, tradycyjnie zaliczane do odrębnych subbasenów, a nawet do regionów (Karpaty wewnętrzne czy zewnętrzne), współwystępują często w jednym systemie depozycyjnym i jednym obszarze basenowym – np. facje jarmucka, inoceramowa, istebniańska, margli krzemionkowych, frydeckich oraz szelfowych piaskowców o typie piaskowców z Rybia są elementami tego samego systemu depozycyjnego, sąsiadując ze sobą. Znacząca okres przejściowy między etapem ekstensji a kompresji, szeroko rozprzestrzeniona (aż do obszaru tatrzańskiego) facja lgocka jest podłożem sedymentacyjnym dla migrującego basenu przedpola.

Tradycyjnie wyróżniane elementy tektoniczne (tzw. jednostki karpackie; jak np. jednostka śląska magurska czy skolska) nie są ściśle związane z tzw. basenami lub subbasenami, są jedynie elementami tektonicznymi, a nie tektoniczno-basenowymi. Proces zamykania basenu i budowania orogenu poprzez tworzenie ścięć tektonicznych skośnych do osi systemów depozycyjnych powoduje, że te same facje znajdują się w kilku jednostkach tektonicznych (jak np. facja lgocka, inoceramowa, czy piaskowców cergowskich).

Dla końcowego uformowania zarówno Karpat wewnętrznych, jak i PPS oraz tzw. Karpat zewnętrznych istotne znaczenia mają wtórne (po etapie kolizyjnym) deformacje tektoniczne, czyli etap formowania uskoków przesuwczych i etap kolapsu orogenu. Szczególne znaczenie dla geometrii Karpat ma etap uskoków przesuwczych. W znacznej mierze reaktywowane zostały pierwotne powierzchnie nasunięć „w sekwencji" (ang. in sequence) oraz pozasekwencyjnych (ang. out-of-sequence thrusts). Etap uskoków przesuwczych powoduje powstawanie szeregu asocjacji uskoków przesuwczych. Tworzą się liczne w Karpatach struktury o typie „końskiego ogona" (ang. horse tails structure) i struktur „kwiatowych" (ang. flower structure) oraz liczne baseny typu „z rozdarcia" (ang. pull-apart basins). Powstają także liczne uskoki normalne, wynikające z ekstensji równoległej do przebiegu głównych elementów tektonicznych.

Ostatnim etapem rozwoju tektonicznego jest etap kolapsu orogenicznego, powodujący rozpad orogenu i cofnięcie procesu nasuwania. Proces kolapsu zachodzi zarówno w Karpatach wewnętrznych, zewnętrznych, ale także w obszarze okołokarpackim. W tym etapie niektóre nasunięcia zostały reaktywowane jako uskoki normalne (m.in. nasunięcia w obrębie jednostki magurskiej). Dla wyjaśnienia sposobu powstawania okien tektonicznych zaproponowano kilka modeli: model powstawania okien w strukturach „kwiatowych", przy strefach uskoków normalnych i w procesie powstawania nasunięć pozasekwencyjnych. Istotne znaczenie w procesie migracji oraz budowania górotworu, a także w procesie tworzenia dużych kompleksów chaotycznych (o genezie sedymentacyjnej) mają nasunięcia pozasekwencyjne (out-of-sequence thrusts) oraz proces utrzymania stałego kąta pryzmy (ang. wedge equilibrium). Wiele stref tektonicznych w Karpatach uległo wielokrotnie reaktywacji we wtórnych (poza procesem kompresji) etapach deformacji. Proces tworzenia melanży tektonicznych zachodzi głównie w wyniku reaktywacji tektonicznej tych samych stref uskokowych. Większość stref melanży tektonicznych związana jest z etapem uskoków przesuwczych. Wtórne etapy deformacji tektonicznych mają także zasadnicze znaczenie dla obrazu geomorfologii Karpat, szczególnie etap uskoków przesuwczych i etap kolapsu orogenu. W opracowaniu postawiono kilka hipotez mogących wyjaśnić przyczyny dodatkowych etapów deformacji tektonicznych oraz przebudowy basenu Karpat. Jednym z powodów może być proces tworzenia orokliny karpackiej, przejawiający się w zaginaniu zarówno przestrzeni basenowej, jak i formującego się orogenu. Proces ów może być także przyczyną zmian nachylenia osi basenu.


OPIS EN:

This study is devoted to chaotic complexes occurring in the Carpathian Mountains. Their genesis and location in the orogen structure is discussed. Among different types of chaotic complexes revealing "blocks in the matrix" structure, the focus was put on tectonic mélanges, never before discussed in Polish scientific literature. In the study a controversial concept on tectono-sedimentary history of the Carpathians is also presented. A commonly accepted theory of the Carpathians as an orogeny associated with the subduction process was questioned. An opinion regarding the existence of wide oceanic areas contributing to the evolution of the Carpathian basin was also criticized. A much simpler model of the history of the basin was proposed. The Carpathian basin filled with sediments which make up the Inner and Outer Carpathians, according to the presented approach, was a single basin zone, subjected to changes and movements during its history. In the assumption adopted in the study, the formation process of the Carpathian basin took place on the passive edge of the eastern and western european platforms, stretched due to extension, re-solidified in the basin closing process and finally subjected to tectonic deformation in the collisional stage. In the early Cretaceous the extension period ends (creation of accommodation space in geometry of semi-trenches) and then begins the process of inversion and closing – the Carpathians Foredeep Basin is also formed. The beginning of the formation of a typical foreland basin means the appearance of an inoceramid depositional system. The flysh type facies appear first in in the area of Inner Carpathians. Therefore, from the late Cretaceous, the Outer Carpathians basin becomes a foredeep basin in relation to previously solidified sediments corresponding to the Outer Carpathians zone. In the view of shared tectono-sedimentary history, the traditional Carpathians division into so called Inner and Outer Carpathians is artificial and has no justification. The area of so called Inner and Outer Carpathians have undergone the same stages of tectonic deformations.

The very process of closing and compression was characterized by the following movements within the Carpathians orogen system: orogeny backstop – foredeep basin – forebulge uplift. Both the foreland basin slope and uplift zones provided clastic material into the basin, acting as a temporary existing "Cordillera". The character and distribution of facies in some geological periods were also influenced by eustatic changes of sea level. Over time, the deposition center moved toward the north. The migration processes of the foreland basin lasted until the late Miocene.

Several models explaining development, distribution and facies relationships in different geologic periods were proposed. In addition, the proposed models of geological development of the Pieniny Mountains area was suggested. Considered as a border area, the Pieniny Klippen Belt is only a residue after the collapse of the orogenic front in the late Cretaceous. In the area of the Polish part of the Carpathian Mountains, the Pieniny Klippen Belt is a chaotic complex of "blocks in the matrix" structure type, with the sedimentary genesis, formed as a result of orogenic front collapse and blocks being dumped into the developing foreland basin – inoceramid system.

Particular facies, traditionally included in the separated basins and even separated regions (Inner and Outer Carpathians), often coexist within one depositional system and one basin zone. ie. Jarmuta beds, Inoceramid beds, Istebna beds, siliceous marls, Fryderyk type marls and Rybie sandstones are elements belonging to the same depositional system. Co-existing with each other widely spread Lgota beds (up to the Tatras area) comprised a sedimentary base for the migrating foreland basin. Lgota beds were deposited during the transition period between the extension and compression stages.

Traditionally distinguished tectonic elements (i.e. Carpathian units such as: Silesian, Magura and Skole units) are not closely related to so called basin and sub-basins, but are only elements of tectonic and not tectono-sedimentary elements. The process of basin closing and orogeny formation, through creating tectonic shearing zones oblique to the axis of depositional systems, are responsible for the occurrence of the same facies in several tectonic units (eg. Lgota beds, Inoceramid beds or Cergowa sandstones).

For the final stage of the formation of both the Inner Carpathians and Pieniny Klippen Belt, secondary (after the collision phase) tectonic deformation processes - strike-slip faulting phase and the collapse of the orogen were of great significance. Strike-slip faulting especially influenced the geometry of the Carpathians. Many of the primary thrust surfaces have been reactivated forming, in sequence and out-of-sequence thrusts. Strike-slip faulting resulted in the formation of a number of associations of strike-slip faults. In the Carpathians, numerous structures of horse tail structure type, flower structure type and many pull-apart basins are present. Also many normal faults resulting from extension acting parallel to the direction of major tectonic elements have been formed.

The ultimate phase in the tectonic development was orogeny collapse, disintegrating the orogeny and withholding the process of thrusting. The collapse process occurs not only in the Carpathians, both Inner and Outer, but also in the surrounding area. At this stage some thrusting sheets were reactivated as normal faults (among others, thrusts in the Magura unit). Several models explaining the genesis of tectonic windows were proposed: formation of tectonic windows in flower structures, nearby normal faults zones and during out – of - sequence thrusting. For the migration processes, orogeny and large chaotic complexes (with sedimentary genesis) formation, out-of-sequence thrusts and the process of maintaining the wedge equilibrium, play an important role. Many tectonic zones in the Carpathians have been repeatedly reactivated in the secondary deformation process, excluding compression.

The process of tectonic mélange formation occurs mainly as a result of the tectonic reactivation of the same fault zones. Most areas with tectonic mélange occurrence is associated with strike-slip faulting. Secondary tectonic deformation processes were also essential for the present geomorphology of the Carpathians, especially strike slip faulting and the stage of orogeny collapse. In the study, several hypotheses that may explain the reasons for additional phases of tectonic deformation and re-development of the Carpathian basin were made. One reason may be the process of the Carpathian Orocline creation, manifesting itself in bending both the basin area and the Orogen. This process can also be the cause of the changes in the slope of the basin axis.

Praca naukowa nr 202 jest dostępna w trybie open acces.

Zamówienie wersji drukowanej:

Cena egzemplarza: 60 zł netto (plus 5% VAT)

Koszt przesyłki: 5 zł brutto za sztukę – list polecony

Zamówienia prosimy składać e-mailowo: nafta-gaz@inig.pl lub telefonicznie 012 617 76 32.

 

TYTUŁ: Poprawa stabilności sedymentacyjnej zaczynów cementowych/An improvement the sedimentation stability of cement slurry

 

 

Autor: Marcin Kremieniewski

 

 

 

KremieniewskiMarcinPoprawa-stabilnosci m216

DOI: 10.18668/PN2017.216
ISSN 2353-2718
ISBN 978-83-65649-22-5

Opis PL

Uszczelnienie kolumn rur okładzinowych w otworach kierunkowych i horyzontalnych stanowi swego rodzaju wyzwanie dla inżynierów z uwagi na specyficzne wymogi stawiane cieczom wiertniczym. Podczas projektowania zaczynów cementowych przeznaczonych do uszczelniania otworów horyzontalnych niezbędne jest uzyskanie odpowiednich parametrów technologicznych, ale przede wszystkim właściwej stabilności sedymentacyjnej zaczynu. Jest to związane z faktem, że na skutek braku stabilności sedymentacyjnej następuje nadmierne frakcjonowanie dodatków i domieszek obecnych w składzie zaczynu cementowego, który po związaniu wykazywał będzie anizotropię struktury rozpatrywanego ośrodka. Efekt powyższego stanowi obniżenie wartości parametrów płaszcza cementowego w górnych partiach uszczelnianego interwału. W celu wyeliminowania tego niepożądanego zjawiska realizowano pracę nad poprawą stabilności sedymentacyjnej zaczynów cementowych.
W części ogólnej książki omawiającej zagadnienie poprawy stabilności sedymentacyjnej zaczynów cementowych przedstawiono studium literaturowe dotyczące zagadnień mających wpływ na wyeliminowanie frakcjonowania zaczynu. Przedstawiono również charakterystykę dodatków i domieszek przeciwdziałających frakcjonowaniu zaczynu cementowego.
Część doświadczalna prezentuje wyniki badań laboratoryjnych, w których podczas badań wstępnych wytypowano grupę środków poprawiających stabilność zaczynu, a następnie, stosując odpowiednie ilości tych środków, opracowano nieulegające frakcjonowaniu zaczyny przeznaczone do stosowania w określonych warunkach otworowych (temperatura od 30°C do 90°C oraz ciśnienie od 5 MPa do 35 MPa). Kolejnym etapem badań było ustalenie wpływu sedymentacji zaczynu na anizotropię struktury płaszcza cementowego.
Zrealizowane prace badawcze pozwoliły zdefiniować wpływ stosowanych dodatków i domieszek na stabilność sedymentacyjną zaczynu cementowego, a następnie wyeliminować jego frakcjonowanie. Na podstawie analizy uzyskanych wyników badań dobrano optymalne składy ilościowe i jakościowe dodatków i domieszek do zaczynów w celu wyeliminowania sedymentacji. W książce przedstawiono grupę receptur zaczynów cementowych nieulegających sedymentacji, przeznaczonych do uszczelniania otworów w określonych warunkach otworowych.

Opis EN

Sealing of casing strings in directional and horizontal wells is a challenge for engineers due to the specific requirements of drilling fluids. When designing cement slurries for sealing horizontal wells, it is necessary to obtain the relevant technological parameters, but above all, appropriate sedimentation stability of cement slurry. This is related to the fact, that due to the lack of sedimentation stability, there is excessive fractionation of the additives and admixtures present in the cement slurry, which after binding, will exhibit anisotropy of the structure. The result is a reduction in the value of the cement sheath parameters in the upper sealed parts of the sealed interval. In order to eliminate this undesirable phenomenon, a research was carried out to improve the sedimentation stability of cement slurries.
In the general part of book, the issue of improving the sedimentation stability of the cement slurry is discussed, and a literature study was presented on issues affecting the elimination of cement slurries fractionation. It also presents the characteristic of anti-fractionation additives and admixtures.
The experimental section presents the results of laboratory tests, where, a group of additives to improve the stability of the cement slurry were selected during initial tests and then using certain amounts of these agents, the non-fractionated slurries intended for use in specific hole conditions (temperature of 30°C to 90°C and pressure from 5 MPa to 35 MPa) were developed. The next stage of the study was to determine the effect of cement slurry sedimentation on the anisotropy of the cement sheath structure.
The research work allowed to determine the effect of the used additives and admixtures on the sedimentation stability of the cement slurry, and then eliminate the fractionation. Based on the analysis of the obtained results, optimum quantitative and qualitative compositions of additives and admixtures for slurry to eliminate sedimentation were chosen. The book presents a group on non-sedimented cement slurry recipes designed for the sealing of wells under specific hole conditions.
  

Cena egzemplarza: 60 zł netto (plus 5% VAT)

Koszt przesyłki: 5 zł brutto za sztukę – list polecony

Zamówienia prosimy składać e-mailowo: nafta-gaz@inig.pl lub telefonicznie 12 617 76 32.

 

 
 
 

TYTUŁ: Estymacja pola prędkości w niejednorodnym ośrodku anizotropowym VTI (Vertical Transverse Isotropy) z zastosowaniem metod optymalizacyjnych

Estimation of the velocity field in inhomogeneous anisotropy media VTI (Vertical Transverse Isotropy) using optimization methods.

 

AUTOR: Karolina Pirowska

 Karolina Pirowska Estymacja     okładka

OPIS PL:

Celem pracy badawczej było opracowanie metody oszacowania pola prędkości propagacji fali podłużnej w niejednorodnym ośrodku anizotropowym VTI na podstawie danych sejsmiki powierzchniowej. W szczególności główny obiekt zainteresowania stanowiło wyznaczenie wartości parametrów Thomsena ε i δ przy założeniu, że prędkość pionowa jest znana, oraz analiza możliwości określenia powyższych parametrów, gdy prędkość pionowa została przyjęta błędnie. Zaproponowana metoda opiera się na tradycyjnej technice analizy prędkości migracyjnych dla ośrodków izotropowych, która polega na poszukiwaniu wartości prędkości, dla których głębokość odwzorowywanego punktu ośrodka jako funkcja odległości pomiędzy źródłem i odbiornikiem jest niezmienna, tzn. nie zależy od offsetu. Jednak w ośrodkach anizotropowych uzyskanie tzw. efektu wypłaszczenia możliwe jest jedynie po uwzględnieniu parametrów anizotropii Thomsena ε i δ. Określenie optymalnych parametrów anizotropii potraktowano jako problem optymalizacyjny, a nowatorskim rozwiązaniem była próba zastosowania probabilistycznych metod optymalizacji globalnej, metody symulowanego wyżarzania oraz algorytmu genetycznego.

W publikacji przedstawiono obliczenia dla trzech modeli o różnym stopniu skomplikowania. Opracowana w projekcie metodyka przyniosła odmienne rezultaty dla poszczególnych modeli. W przypadku najprostszego modelu I (z jedną granicą płaskorównoległą) trafniejsze wyniki otrzymano za pomocą algorytmu genetycznego GA. Jednak błąd względny procentowy oszacowania był duży i wynosił 16% dla parametru ε oraz 58% dla parametru δ. W obliczeniach z zastosowaniem modelu II (z granicą nachyloną) obie metody przyniosły porównywalne wyniki. Parametr ε został oszacowany z dokładnością 0,1%, natomiast błąd procentowy oszacowania parametru δ wynosił 24%. Istotnym punktem badań było przetestowanie metodyki na bardziej skomplikowanym modelu III, zawierającym struktury charakterystyczne dla występowania węglowodorów – uskok oraz wysad solny. Niestety okazało się, że osiągnięcie „wypłaszczenia" na kolekcjach wspólnego punktu obrazowania nie odzwierciedla się w dokładności oszacowania poszczególnych parametrów anizotropii. Ponieważ obliczenia prowadzone dla całego modelu nie były satysfakcjonujące, podzielono go na trzy części, dla których obliczenia były wykonywane niezależnie. Najbliższe rzeczywistości wyniki otrzymano w przypadku części modelu bez skomplikowanych struktur. Tak jak w sytuacji z modelami I oraz II dokładniej oszacowany został parametr ε.

Rezultatem niniejszego projektu jest algorytm, który pomimo niedoskonałości może wspomagać dotychczasowe metody szacowania pola prędkości w ośrodkach anizotropowych. Przykładowo metoda może być wykorzystana przy szacowaniu parametrów wejściowych dla algorytmów migracji anizotropowej.


Opis EN:

The aim of this project was to work out the method of estimation of the velocity field for the longitudinal wave in inhomogeneous anisotropy medium VTI on the basis of seismic survey data. In particular, the main efforts was made to determine Thomsen parameters ε i δ with assumption that the vertical velocity is known and analyse of possibility of extracting this parameters in the situation when the vertical velocity is incorrect. Proposed method is based on the conventional technique of the migration velocity analysis for isotropic medium. It consists in seeking of the velocity values for which the depth of imaged point of the medium as the function of the distance between the source and a receiver is invariable. It means the depth of imaged point is not dependent on the offset. The estimation of the anisotropy parameters was treated as optimization problem, and the attempt to use probabilistic global optimization methods as simulated annealing and genetic algorithm was innovative solution.The results of calculation for the three different models are presented in this publication. For the simplest model I (with one plane and horizontal reflector) more accurate solution was received using the genetic algorithm GA. Nevertheless the relative error of estimation is high. It is equal 16% for the parameter ε and 58% for the parameter δ. For the model II (with the dipping reflector) both methods gave the comparable results. The parameter ε was estimated with the accuracy 0.1%, the relative error of parameter δ estimation is 24%.

Important part of the research was testing of methodology for more complicated model III, which contains the structures specific for occurrence of the hydrocarbons – the fault and the salt dome. Unfortunately, it appeared that reaching of flatness in the common image point panels does not result in accuracy of the anisotropy parameters estimation. The calculation for model III was not satisfying, this is why it was divided into three parts. For the each part the calculation was conducted independent. The result received for the part without complicated structures was the nearest of the reality. Like for model I and model II, more accurate estimation was for the parameter ε.

The presented algorithm, despite of imperfection, can be auxiliary for the previous methods of the velocity field estimation in anisotropy medium. As an example, the method can be used for the estimation of the input parameters for anisotropic migration algorithms.

Praca naukowa nr 200 jest dostępna w trybie open acces.

Zamówienie wersji drukowanej:

Cena egzemplarza: 60 zł netto (plus 5% VAT)

Koszt przesyłki: 5 zł brutto za sztukę – list polecony

Zamówienia prosimy składać e-mailowo: nafta-gaz@inig.pl lub telefonicznie 012 617 76 32.