Instytut Nafty i Gazu - Państwowy Instytut Badawczy

TYTUŁ: Zabiegi kwasowania w stymulacji wydobycia z odwiertów – projektowanie oparte na badaniach laboratoryjnych/Acidizing treatments in wellbore stimulation – design based on laboratory research

 

 

Autorzy: Marek Czupski, Piotr Kasza

 

 

 

218 czupski kasza zabiegi kwasowania

DOI: 10.18668/PN2017.218

ISSN 2353-2718

ISBN 978-83-65649-24-9

Opis PL

Kwasowanie jako metoda stymulacji wydobycia ma zastosowanie zarówno w formacjach piaskowcowych, jak i węglanowych. Bardzo dużą zaletą tej technologii jest fakt, że zwrot kosztów poniesionych na przeprowadzenie zabiegu i poprawę produktywności odwiertu następuje dużo szybciej, niż dzieje się to w przypadku wykonania zabiegu hydraulicznego szczelinowania. W formacjach piaskowcowych zabieg ma na celu głównie rozpuszczenie lub usunięcie uszkodzenia strefy perforacji oraz przestrzeni porowej formacji w pobliżu odwiertu. Kwas, przepływając przez system porów, rozpuszcza zalegające w nim ciała stałe oraz minerały i ziarna uwięzione w zwężeniach porów [29]. Tego typu zabieg ma szansę powodzenia, jeżeli uszkodzenie formacji jest spowodowane przez minerały i ciała stałe, które mogą być usunięte przez kwas. W większości przypadków nie można jednak oczekiwać znacznego wzrostu produkcji po przeprowadzeniu kwasowania matrycowego nieuszkodzonej strefy przyodwiertowej.

Natomiast w formacjach węglanowych kwas rozpuszcza skałę w sposób niejednorodny, tworząc kanały o dużej przepuszczalności, zwane otworami robaczkowymi. Powstają one z powodu naturalnej niejednorodności przepuszczalności matrycy skalnej, w związku z którą również przepływ cieczy kwasującej jest zróżnicowany w każdym jej elemencie. W obszarach o większej szybkości przepływu następuje większe rozpuszczanie matrycy, a to powoduje dodatkowy wzrost przepływu w tych strefach. Kanały mogą tworzyć się bardzo szybko, ponieważ opór przepływu jest w nich nieznaczny w porównaniu z otaczającą je (oryginalną) przestrzenią porową.

Celem zabiegu kwasowania jest w tym przypadku zmniejszenie współczynnika „skin efektu" poprzez obejście uszkodzonej strefy przyodwiertowej i wzrost efektywnego pro­mienia odwiertu. W naturalnie szczelinowatych złożach węglanowych otwory robaczkowe łączą ze sobą istniejące szczeliny, tworząc długie i głęboko penetrujące w formację kanały przepływowe. W formacjach pozbawionych naturalnych szczelin długość otworów robacz­kowych może wynosić około 1–2 m, natomiast przepuszczalność strefy przyodwiertowej zawierającej otwory robaczkowe jest zwykle kilka rzędów wielkości większa od oryginalnej przepuszczalności skały.

Prezentowana monografia stanowi kompendium informacji na temat zabiegów kwasowania wykorzystywanych do stymulacji wydobycia z odwiertów.

Rozdział 1 zawiera ogólny podział zabiegów z użyciem kwasów na: wanny kwasowe, kwasowania matrycowe i szczelinowania kwasem. Przedstawiono w nim krótkie charakterystyki każdego z tych zabiegów oraz etapy, które powinien obejmować proces prawidłowego przygotowania zabiegu kwasowania.

Rozdział 2 przedstawia szczegółowy opis czynników, które mogą być przyczyną uszkodzenia formacji w strefie przyodwiertowej, takich jak: drobne cząstki obecne w złożu czy też minerały ilaste. Do uszkodzenia przepuszczalności strefy przyodwiertowej może dochodzić również w wyniku następujących prac wykonywanych w odwiercie: wiercenie, udostępnianie, eksploatacja, stymulacja, nawadnianie czy zaawansowane metody wydoby­cia (EOR). W rozdziale tym opisano również techniki obejmujące pomiary wykonywane w odwiercie oraz testy laboratoryjne używane do określenia uszkodzenia formacji.

Rozdział 3 dotyczy doboru składu cieczy kwasującej. Opisano w nim podstawowe rodzaje kwasów oraz różnych dodatków, które mogą wchodzić w skład cieczy zabiegowych, takich jak: inhibitory korozji, środki powierzchniowo czynne, alkohole, mutual solvents, środki do kontroli jonów żelaza, stabilizatory minerałów ilastych, środki stabilizujące drobne cząstki zawarte w formacji, środki spieniające, inhibitory wytrącania się osadów węglanu wapnia i siarczanu wapnia oraz środki zmniejszające opory przepływu.

Rozdział 4 zawiera opis badań laboratoryjnych, które są niezbędne do właściwego zaprojektowania zabiegu kwasowania. Przedstawiono w nim testy przeprowadzane w celu oceny petrofizycznych i chemicznych właściwości skał złożowych oraz badania wykonywane w celu zaprojektowania oczyszczania armatury otworowej przed właściwym zabiegiem kwasowania. Jednak najbardziej obszerną jego część stanowi opis testów wykonywanych w celu dobrania odpowiednich dodatków do cieczy kwasujących. Rozdział ten kończy opis badań przepływowych na rdzeniach, które służą do ostatecznej weryfikacji efektywności zaprojektowanej cieczy kwasującej, między innymi na podstawie wizualizacji otworów robaczkowych wytworzonych w węglanowych korkach rdzeniowych.

Rozdział 5 dotyczy zastosowania badań przeprowadzonych w Zakładzie Stymulacji Wydobycia Węglowodorów w Instytucie Nafty i Gazu – Państwowym Instytucie Badaw­czym do zaprojektowania i przeprowadzenia zabiegów w różnych formacjach złożowych. Opisano w nim efekty zabiegów zrealizowanych w odwiertach usytuowanych w formacjach czerwonego spągowca oraz dolomitu głównego przy użyciu różnych cieczy i metod ich zatłaczania.

Rozdział 6 podsumowuje informacje zawarte w niniejszej publikacji. Umieszczono w nim również zalecenia i rekomendacje dotyczące przyszłych prac o tematyce stymulacji wydobycia metodą kwasowania.


Opis EN

Matrix acidizing as a method of reservoir stimulation, is applicable to both sandstone and carbonate formations. One major advantage of using this technology, is the fact, that the reimbursement of the costs incurred for the execution of the treatment and the im­provement of the productivity of the wellbore, takes place much faster than, for example, in the case of hydraulic fracturing treatment. In sandstone formations, the treatment is primarily to dissolve or remove perforation damage, and the porous space of the formation near the wellbore. The acid flowing through the pore system, dissolves solids deposited in it, as well as minerals and grains trapped in the contraction of pores [29]. This type of treatment is likely to succeed, if formation damage is caused by minerals and solids that can be removed by acid. In most cases, however, one cannot expect a significant increase in production after execution of matrix acidizing, if no damage is present.

However, in carbonate formations, the acid dissolves the rock in a heterogeneous manner, creating channels with high permeability called wormholes. They are formed due to natural heterogeneity of the rock matrix permeability, in connection with which, also the flow of the acidizing liquid is varied in each of its elements. In areas where the flow rate is higher, the dissolution of the matrix is increased, and that causes an additional in­crease in flow in those zones. The channels can be formed very quickly, because their flow resistance is insignificant, when compared to the surrounding (original) pore space.

The purpose of the acidizing treatment in this case, is to reduce the "skin" factor by bypassing the damaged near-wellbore zone and to increase the effective wellbore radius. In the natural fractured carbonate reservoirs, the wormholes connect the existing fractures, forming long flow channels deeply penetrating the formation. In formations devoid of natural fractures, the length of wormholes can be about 1 to 2 m, while the permeability of the near-wellbore zone containing wormholes, is usually several orders of magnitude larger than the original permeability of the rock.

The presented monograph consists of 5 chapters.

Chapter 1 contains a general division of acid treatments into: acid baths, matrix acidizing and acid fracturing. It presents brief characteristics of each type of these tre­atments and the stages that should be included in the proper preparation process of the acidizing treatment.

Chapter 2 presents a detailed description of factors that may be the cause of formation damage in the near-wellbore zone, such as: fine particles present in the reservoir or clay minerals. The permeability of the near-wellbore zone can also be damaged as a result of the following works performed in the well: drilling, completion, production, stimulation, water flooding, or enhanced oil recovery (EOR). This chapter also describes techniques, including wells and laboratory tests used to determine damage to the formation.

Chapter 3 relates to the selection of the acidizing liquid composition. It describes the basic types of acids and various additives that can be included in the composition of treatment liquids, such as: corrosion inhibitors, surfactants, alcohols, mutual solvents, iron control agents, clay control additives, agents stabilizing fine particles included in the formation, foaming agents, inhibitors of precipitation of calcium carbonate and calcium sulphate sediments and friction reducers.

Chapter 4 contains a description of laboratory tests that are necessary for the proper design of the acidizing treatment. It presents the tests conducted to assess petrophysical and chemical properties of reservoir rocks and the tests conducted to design the tubing cleanout process prior to proper acidizing treatment. Its most extensive part, however, is the description of the tests conducted to select suitable additives for acidizing liquids. The chapter concludes with a description of core flow tests that are used for the ultimate verification of the designed acidizing liquid effectiveness, inter alia based on the visualization wormholes formed in carbonated core plugs.

Chapter 5 concerns the use of the tests conducted in INiG – PIB Department of Production Stimulation for the design and execution of treatments in various reservoir formations. It describes the effect of the treatments performed in wellbores located in the formations of Rotliegend and Main Dolomite using various liquids and methods of their injection.

Chapter 6 summarizes the information contained in this publication. It also conta­ins recommendations and guidelines for further works on production stimulation using acidizing method.

  

Cena egzemplarza: 60 zł netto (plus 5% VAT)

Koszt przesyłki: 5 zł brutto za sztukę – list polecony

Zamówienia prosimy składać e-mailowo: nafta-gaz@inig.pl lub telefonicznie 12 617 76 32.